Enumerating simplicial decompositions of surfaces with boundaries

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerating simplicial decompositions of surfaces with boundaries

It is well-known that the triangulations of the disc with n + 2 vertices on its boundary are counted by the nth Catalan number C(n) = 1 n+1 ` 2n

متن کامل

Enumerating branched coverings over surfaces with boundaries

The number of nonisomorphic n-fold branched coverings over a given surface with a boundary is determined by the number of nonisomorphic n-fold graph coverings over a suitable bouquet of circles. A similar enumeration can be done for regular branched coverings. Some explicit formulae for enumerations are also obtained. © 2003 Elsevier Ltd. All rights reserved. MSC 2000: 05C10; 05C30; 57M12

متن کامل

Simplicial Decompositions, Tree-decompositions and Graph Minors

The concepts of simplicial decompositions, tree-decompositions and simplicial tree-decompositions were all inspired by a common forerunner: the decompositions of finite graphs used by K. Wagner in his classic paper [ 13 ], in which he proved the equivalence of the 4-Colour-Conjecture to Hadwiger’s Conjecture for n = 5. To show that the 4CC implies Hadwiger’s Conjecture (for n = 5), Wagner used ...

متن کامل

Simplicial tree-decompositions of infinite graphs, I

This paper is intended as an introduction to the theory of simplicial decompositions of graphs. It presents, in a unified way, new results as well as some basic old ones (with new proofs). Its main result is a structure theorem for infinite graphs with a simplicial tree-decomposition into primes. The existence and uniqueness of such prime decompositions will be investigated in two subsequent pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2012

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2011.09.010